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Contribution to the field3

This method paper presents an open-source research framework for the next generation of brain-computer4
interfaces (BCIs). A grand challenge for current BCI research is establishing efficient methods for reliable5
online classification of neural activity. We introduce a framework for real-time classification, analysis, and6
computations to bring the human into the loop of learning, evaluation, and improvement. Our approach7
leads to shorter calibration times with the potential of expanding the boundaries of BCI research in both8
basic science and applied settings.9

ABSTRACT10

Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction11
with the physical world. The technology has great potential in several applied areas, ranging12
from medical applications to entertainment industry, and creates entirely new conditions for13
basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online14
classification of the user’s current state of mind, and more sophisticated decoding of mental states15
depends on time-consuming offline data analysis. The present paper addresses this limitation16
directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next17
generation of online BCIs. Specifically, we present an open-source framework with a modular18
and customizable hardware-independent design, comprising a human-in-the-loop (HIL) model19
training and retraining, real-time stimulus control in a BCI-HIL research framework, enabling20
transfer learning and cloud computing for online classification of electroencephalography (EEG)21
data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays22
using web browser technologies. Messages are sent using the Lab Streaming Layer standard23
and websockets. Real-time signal processing and classification, as well as training of machine24
learning models, is facilitated by the open-source Python package Timeflux. The framework25
runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL26
framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia27
through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable28
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properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released29
under MIT license with examples at bci.lu.se/bci-hil30

Keywords: Brain-Computer Interface, real-time, online, EEG, research framework31

1 INTRODUCTION

The ability to accurately decode mental states, including perceptions, thoughts, and emotions in real-time32
would represent a significant advancement in numerous research fields and provide a wide range of potential33
applications. A brain-computer interface (BCI) is a device that interprets brain activity to enable direct34
human-to-machine communication without using regular pathways such as peripheral nerves or muscles35
(Wolpaw et al., 2002). While brain activity may be measured using a variety of methods such as functional36
magnetic resonance imaging (fMRI) (Belliveau et al., 1991), magnetoencephalography (MEG) (Cohen,37
1968), and functional near-infrared spectroscopy (fNIRS) (Jöbsis, 1977), the examples and discussions38
presented in this paper are given primarily with non-invasive electroencephalography (EEG) (Berger, 1929)39
in mind. The temporal resolution of the EEG is high and thus well-suited for BCI research and applications.40
A fundamental limitation with current BCIs is that more advanced decoding is time-consuming and would41
require offline data analysis. Thus, the next generation of BCIs critically depends on the development of42
analytical tools to speed up and enhance the online classification of brain data. In this paper, we provide a43
BCI human-in-the-loop (HIL) framework for this purpose. The main components of BCI-HIL are visualized44
in Figure 1.45

1.1 Brief history of BCI research46

”Über das Elektrenkephalogramm des Menschen” was written in 1929, five years after the first successful47
recording of the Electroencephalogram by Berger (1929). In 1973, one of the first brain-computer interface48
setups was described by Vidal (1973). In the coming years, BCI research expanded to include the49
development of more sophisticated systems that could be used to assist or augment human cognitive50
or motor functions.51

BCI research is advancing with a focus on the development of more user-friendly and effective BCI52
systems, by exploring the use of machine learning algorithms to improve the performance and reliability of53
BCIs, and to enable them to be used in a wider range of applications. The field is continuing to evolve and54
grow as the potential applications of BCIs expand, leading to new and exciting possibilities for the future.55

In the future, the utilization of machine learning, specifically deep neural networks, mandates a56
comprehensive approach that challenges the existing scientific methodology prevalent in the BCI research57
domain: To develop a model, one must comprehend the problem domain, the data, the problem at hand, pre-58
existing models, and the design and implementation of models. Mastery of these components is essential59
to effectively construct and utilize models. The adoption of deep neural networks may require a holistic60
perspective, in contrast to the reductionist method of current scientific practice, where machine learning61
may assume the task of comprehending and generating models. This epistemological shift could potentially62
lead to new and creative methods in our research toolbox. However, deep neural networks require huge63
training datasets, which can solely be obtained through yet-to-be-seen ubiquitous BCI consumer products64
used in everyday life.65
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1.2 Different types of BCI systems66

Based on how information is fundamentally passed from the brain to a computer, BCI systems are67
typically divided into three categories: active, reactive, and passive. For a somewhat more precise division68
based on the mode of operation, BCIs are also often categorized into different paradigms, implicitly69
specifying if it is used in an active, reactive, or passive system.70

1.2.1 Active BCIs71

With an active BCI the subject is intentionally trying to modulate mental states, for example by actively72
thinking left, stop, forward. The goal of intentionally encoding such mental states is to generate signals73
that can be separated by the BCI system, and thus, subsequently can be used as instructions or inputs to74
some application. A classic example is the motor imagery (MI) paradigm where the subject is imagining75
the movement of different parts of the body, without actually moving them (Abiri et al., 2019).76

1.2.2 Reactive BCIs77

Another way of encoding information is to present different stimuli to a subject and then use the reactions78
to infer possible intentions of the subject, a reactive BCI. Typically, the subject pays selective attention to79
some stimulus (or category of stimuli) corresponding to some information desired to convey. The BCI then80
tries to discriminate the brain signals corresponding to the category of target stimuli.81

A commonly used paradigm is the oddball paradigm, where stimuli of different categories are sequentially82
presented to the subject (Abiri et al., 2019). Here, one of the occasionally displayed stimuli categories is83
the target category which in some way, at least from the subject’s perspective, is different from the other84
categories. As a result, different event-related potentials (ERPs) patterns are elicited depending on whether85
the subject is focusing on, or recognizing a certain category or not. The difference in brain signal patterns,86
time-locked to the stimuli onset, makes it possible for a computer algorithm to distinguish and classify87
the target category from the other, non-target categories. A common application is the P300-speller where88
different letters are flashed sequentially, and the subject is waiting for a certain letter to be flashed. Being89
able to decode a letter of interest and then repeatedly apply the process to new letters makes it possible for90
the subject to spell out words (Farwell and Donchin, 1988).91

Another reactive BCI paradigm is the so-called steady-state evoked potentials (SSEP). Here, several92
stimuli (often visual) are oscillating at different frequencies, for example a number of flickering LED lights.93
The subject is asked to focus on one of the stimuli, corresponding to some information or command to94
be conveyed. If the subject gazes at the flickering stimuli, brainwaves are elicited with the corresponding95
frequency and its harmonics, as described by Muller-Putz and Pfurtscheller (2008).96

1.2.3 Passive BCIs97

The final category is passive BCIs. Here, brain activity is monitored passively, i.e., without the subject’s98
active intention of communicating with the BCI. Typical use cases would be to monitor the subject’s99
attention, level of focus, cognitive stress, tiredness, or workload.100

1.3 Next generation BCIs101

Functional neuroimaging techniques are widely used for medical purposes to assess brain health and102
for disease diagnostics. These research techniques serve as a fundamental component in the field of103
cognitive neuroscience by offering valuable insights into the underlying mechanisms through which the104
brain enables cognitive functions. Such research comprises experimental paradigms designed to isolate105
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the neural mechanisms supporting a particular cognitive function. In such experiments, participants are106
typically presented with multiple stimuli (e.g., faces and objects) and instructed to perform a cognitive107
task (e.g., memorize). Statistical analysis is conducted both at the participant level, contrasting neural108
data from different trial types, and at the group level testing hypotheses about population data. When109
analyzing the recorded brain signals to draw conclusions after the experiments, is it usually enough to110
know the onset-time and duration, and which stimulus was presented. For these purposes, during the111
experiment itself, it is sufficient to present a pre-determined sequence of stimuli. By pre-determined in this112
context we mean that the stimuli-environment is static and does not get adjusted during the experiment113
based on the subject’s actions or decoded state of the brain. Such a static stimuli-environment means that114
stimuli-sequences and instructions are pre-determined, either manually, randomized, or algorithmically115
arranged.116

The purpose of a BCI is a bit different, seeking to convey information in order to, in some way, impact117
the state of the world. Similar to neuroscientific studies on brain functionality, when considering a BCI,118
a fundamental task is to discriminate between different brain states. However, in the case of BCI, not119
only by evaluation of statistical significance, but also while being as fast as possible. The desire for fast120
near-real-time analysis originates from the idea that the results of the signal-decoding are used to interact121
with the surrounding world here and now, not hours or months later when all data has been recorded,122
cleaned, and carefully analyzed by offline methods. For this reason, the somewhat different nature of a BCI123
operating in real-time compared to traditional neuroscientific experiments will put different requirements124
on the system in use. This will also influence the paradigm used to encode discriminable brain signals, as125
well as the methods and algorithms used for signal processing and analysis of the recorded neuroimaging126
data.127

Since fast discriminability between mental states is desired when considering a BCI system, the paradigms128
used are typically more crude than regular neuroscience experiments. The regular paradigms used for BCI129
(briefly described in Section 1.2), for example, ERP oddball, motor imagery, and SSEP, are all designed to130
create maximum separability between different experimental conditions. For each paradigm, the neural131
mechanisms used and detected are typically the same for any application, not taking into account if the132
used encoding is a natural way of transferring information or not. A less crude way would be to better align133
the way information is conveyed with human intuition of the task at hand. A simple example would be134
playing a game where you can jump and go forward. For a human, it is probably more natural to imagine135
walking and jumping rather than imagining moving the right and left arm respectively. Of course, tailoring136
the decoding algorithms to such encodings would probably put completely different computationally and137
algorithmically requirements on the system, compared to the BCIs of today.138

Not only the paradigms are different when comparing BCI system with more traditional neuroscientific139
studies. While neuroscientific experiments are mostly focused on understanding how the human brain140
works on a population level, with a BCI we are interested in enabling each individual subject to convey141
information as fast as possible. Thus, it also makes sense to, if possible, individualize the analysis as much142
as possible. This aspect is reflected not only in the use of machine learning for the classification of data,143
but also by using data-dependent methods for individualized feature extraction such as common spatial144
patterns (CSP) (Koles, 1991), and xDAWN (Rivet et al., 2009). Using data-driven methods enables the145
use of transfer learning, where knowledge or data from analyzing one problem is applied when trying to146
solve another, related problem. In the case of a BCI, this would typically be to use data from other subjects,147
sessions, and experimental paradigms. Because of the well-known inter-subject and inter-session variability148
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in EEG data, is is highly desirable to transform and transfer data, to make the data generalize better across149
different conditions.150

The utilization and empirical exploration of transfer learning provides an opportunity to leverage larger151
and more diverse datasets, consequently facilitating the usage of advanced data-driven models. Additionally,152
as more data in the current session becomes available it is possible to gradually improve models or switch153
strategy to optimize the performance of the BCI system during use. Bigger datasets and more advanced154
and dynamical models may require more computational resources, which can be handled by offloading155
heavy computations to cloud resources.156

Another important aspect is closing the loop with the human using the BCI. It is natural to consider157
this aspect when developing BCI systems, as the near real-time analysis might be used to dynamically158
alter the stimuli-environment. In contrast to static stimuli mentioned above, a dynamic stimulus would159
mean that the environment is changing based on analysis of the brain states in near real-time. With the160
goal of using a BCI to convey information in order to change the state of the world, it makes sense to161
also develop algorithms in a human-in-the-loop setting where the stimuli-environment is influenced by162
the information decoded by the BCI. This aspect might be especially relevant for an active BCI, since163
modulating the mental states is a somewhat continuous task, to a high degree self-inflicted. It is shown164
that in such scenarios, the subject would experiment with the way mental states are encoded, either if the165
output results or commands are not satisfactory, or just slowly drift in strategy over time. Dynamic stimuli166
might also be beneficial when considering reactive BCIs, where specific stimuli can be presented to the167
subject in order to optimize some quantity of interest, as described by Tufvesson et al. (2023). Finally,168
considering that additional insights gained from offline analysis can be used to improve the online analysis169
and experimental setup, we see an emerging dual loop for improving BCI performance. An illustration is170
given in Figure 2.171

When comparing aspects of neuroscientific studies trying to understand the mechanics of the brain, and172
the development of BCIs, there are both differences and possible synergies. Using knowledge and insights173
from neuroscience could be essential for developing more advanced BCIs, when combining data-driven174
methods such as machine learning and individualized feature representation with more advanced models175
on how information is processed inside of the brain. In the other direction, more advanced algorithms and176
signal representations developed for near real-time analysis in BCI could help neuroscientists to perform177
more advanced analysis and make use of bigger data sets, faster computational resources, and dynamic178
experiments.179

In summary, the development of advanced BCI systems requires consideration of various aspects,180
including the neural mechanisms of the brain, computational resources for data-driven algorithms, and181
human-in-the-loop capabilities to cope with dynamic stimuli-environments. The optimal combination of182
these components for development of an efficient BCI system across different paradigms remains unclear.183
Hence, in order to facilitate the evaluation and testing of advanced approaches to BCI systems, it is crucial184
to test various options. This process is made easier when the software and hardware are both user-friendly185
and highly customizable. The BCI-HIL framework is in active development and is written in modern186
high-level languages using freely available tools.187

1.4 Outline188

For readers interested not only in design principles and a system overview, but also in implementation189
details and programming, we recommend cloning the provided code repository containing all code used in190
the paper. Inspecting the actual code in parallel with reading the paper will lower the level of abstraction191
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while also providing more insights and inspiration. For instructions on how to set up and run the examples,192
we refer to the README.md-file located in the root folder of the BCI-HIL repository.193

In Chapter 2, Material and Equipment, we describe hardware and software tools relevant when designing194
or considering using a BCI framework, for example EEG-caps, communication protocols, and software for195
stimuli presentation and signal processing. In Chapter 3, Methods, we first describe desirable properties196
of a BCI framework and then show how open-source software tools can be used to design components197
of a human-in-the-loop BCI with these objectives in mind. This is followed by some practical aspects to198
consider when using a BCI. In Chapter 4, Results, we present and provide two BCI applications designed199
using the BCI-HIL framework. The paper is concluded with a discussion in Chapter 5.200

2 MATERIALS AND EQUIPMENT

Some major system components are found in almost every BCI. First of all, equipment for signal acquisition201
of functional neural activity is required. Additionally, in order to receive, record, and/or analyze the202
measured signals, a computer with relevant software is needed. In many cases one is also interested in203
hardware and software used for providing a controlled stimuli-environment. In this section, different204
hardware and software-tools relevant when designing a BCI framework are presented. Extra focus is given205
to components that will be used as sub-components of BCI-HIL, presented in Section 3.2.206

2.1 Measure functional neural activity207

There are many possible ways of performing functional imaging of neural activity in the brain. Some208
technologies directly measure activity in the electric domain while others use hemodynamic-based209
measures (indirect measures of neural activity based on properties of the blood in the brain). The most210
prominent technologies used in the electric domain are electroencephalography (EEG) (Berger, 1929) and211
magnetoencephalography (MEG) (Cohen, 1968), measuring electric field potentials and magnetic fields212
respectively. Correspondingly, for hemodynamic-based measures two of the most common technologies213
used are functional magnetic resonance imaging (fMRI) (Belliveau et al., 1991) relying on blood-oxygen-214
level-dependent (BOLD) contrast (Ogawa et al., 1990), in turn dependent on paramagnetic properties of215
hemoglobin, and functional near-infrared spectroscopy (fNIRS) (Jöbsis, 1977) which measure changes216
in hemoglobin concentrations. There are also many other methods for functional neuroimaging, such as217
positron emission tomography (PET), intracortical neuron recordings (INR), and electrocorticography218
(ECoG) (Leuthardt et al., 2004), where the last two are of invasive nature.219

In general, there are fundamental trade-offs that are made when choosing any of the above-mentioned220
technologies used for functional neuroimaging. Examples of these trade-offs are temporal and spatial221
resolution, price, portability, ethics, personal health risks, and ease of use. In this paper, we focus on222
EEG which excels in terms of temporal resolution, price, and portability, as well as low risk from a health223
perspective. However, compared to many of the other technologies, EEG lacks substantially in terms of224
spatial resolution (Nam et al., 2018).225

2.2 Landscape of EEG processing tools226

There are many available tools and frameworks intended for various types of EEG-recordings, paradigms,227
experiments, signal processing, and post hoc analysis. Listed below are some tools commonly used for228
EEG-analysis, and to some extent for other functional neuroimaging technologies. Firstly, tools specifically229
designed for real-time analysis are presented, including frameworks that have been widely utilized over an230
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extended period and some more recent alternatives. Then, some tools mainly targeted for offline analysis231
are presented, and finally, a couple of frameworks used for stimuli-presentation are covered.232

Regarding open-source licenses, the MIT and BSD licenses are the least restrictive, with no implication233
on patents, and modifications to the original source code can be made without requiring derived works to234
be open-sourced as well. The MIT and BSD licenses exists in many versions1. The GPL license2, which is235
also common in open-source software, puts some additional requirements regarding patents and forces236
derived works to publish any updated source code as open-source as well.237

2.2.1 Real-time online BCI research frameworks238

2.2.1.1 BCILAB239

BCILAB3 is an open-source MATLAB-based toolbox as described by Kothe and Makeig (2013) with240
a GPL license. BCILAB is designed as an EEGLAB4 plugin used for design, prototyping, testing,241
experimentation with, and evaluation of brain-computer interfaces. The toolbox was maintained from 2006242
to 2017 and is no longer in active development.243

2.2.1.2 FieldTrip244

FieldTrip5 is an open-source MATLAB software package for analysis of MEG, EEG, and245
electrophysiological data as described by Oostenveld et al. (2011). The toolbox has been developed246
since 2003 and is released under a GPL license.247

2.2.1.3 BCI2000248

BCI20006 is a general-purpose software system for brain computer interface research as described by249
Schalk et al. (2004), released under a GPL license. BCI2000 includes software tools that can acquire and250
process data, present stimuli and feedback, and manage interaction with outside devices such as robotic251
arms. BCI2000 is written in C++ with interfaces to MATLAB and Python in Microsoft Windows, with252
limited functionality with other operating systems.253

2.2.1.4 OpenViBE254

OpenViBE7 is a software platform as described by Renard et al. (2010) with an AGPL-3 license, that255
enables to design, test, and use of brain-computer interfaces. OpenViBE can also be used as a generic real-256
time EEG acquisition, processing, and visualization system. OpenViBE was actively developed between257
2006 to 2018. It supports Microsoft Windows, Ubuntu, and Fedora.258

2.2.1.5 Falcon259

Falcon8 is a highly flexible open-source software for closed-loop real-time neuroscience as described by260
(Ciliberti and Kloosterman, 2017). Falcon is written in C++ and is released under a GPLv3 license.261

1 spdx.org/licenses
2 gnu.org/licenses
3 sccn.ucsd.edu/wiki/BCILAB
4 sccn.ucsd.edu/eeglab
5 fieldtriptoolbox.org
6 bci2000.org
7 openvibe.inria.fr
8 bitbucket.org/kloostermannerflab
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2.2.1.6 Gumpy262

Gumpy9 is an open-source toolbox for development of BCI systems. It is written in Python and is mainly263
based on a collection of already proven Python libraries such as NumPy, SciPy, and scikit-learn as described264
by Tayeb et al. (2018). Gumpy is released under the MIT license.265

2.2.1.7 Timeflux266

Timeflux10 is an open-source framework for data collection and real-time processing of generic time267
series data. However, it is developed with BCIs and other bio-signal applications in mind. Timeflux is268
released under the MIT license and is written in Python, and can be used across platforms. The real-time269
processing capabilities in BCI-HIL presented in this paper are based on Timeflux. Thus, a more detailed270
overview of the framework is given in Section 2.4.4 below.271

2.2.2 Non-realtime offline BCI research frameworks272

2.2.2.1 EEGLAB273

EEGLAB11 as described by Delorme and Makeig (2004) is an open-source MATLAB toolbox for analysis274
of averaged and single-trial EEG data. It is released under a GPL license.275

2.2.2.2 MNE-Python276

MNE-Python12 is an open-source Python package for exploring, visualizing, and analyzing human277
neurophysiological data: MEG, EEG, sEEG, ECoG, NIRS, and more, as described by Gramfort et al.278
(2013). MNE is released under the BSD license.279

2.2.3 Stimuli toolboxes280

2.2.3.1 Pyff281

Pyff13 is the Pythonic feedback framework released under GPLv2 license. Pyff uses the network protocol282
UDP to communicate with other modules in the BCI system, and XML is used to wrap arbitrary data in a283
format Pyff can handle, as described by Venthur et al. (2010).284

2.2.3.2 Psychopy285

Psychopy14 is an open-source Python package with a GPLv2 license to build experiments using a GUI or286
a programming API.287

2.3 Hardware288

2.3.1 EEG hardware289

There is a plethora of hardware devices available for non-invasive EEG signal acquisition, ranging from290
open-source low-cost (Teversham et al., 2022) to high-end, wireless, and closed source. What device291
to choose depends on which type of research environment you target. Any hardware based on the Lab292
Streaming Layer (LSL), described in 2.4.2.1 is compatible with BCI-HIL. We have implemented and tested293

9 github.com/gumpy-bci/gumpy
10 timeflux.io
11 sccn.ucsd.edu/eeglab
12 mne.tools
13 bbci.de/pyff/index.html
14 psychopy.org
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the BCI-HIL research framework using three different EEG hardware devices: the MBT Smarting, Muse S,294
and Neurosity The Crown.295

2.3.1.1 MBT Smarting296

The MBT Smarting15 as introduced by Debener et al. (2012) is a wet electrode wireless EEG system.297
It uses a Bluetooth transceiver to send EEG signals to an Android smartphone that can re-transmit the298
EEG stream, the head accelerometer, and smartphone accelerometer data in LSL outlets. It has 24 EEG299
electrodes evenly distributed across the skull, and a 3 degrees-of-freedom accelerometer. The sampling300
rate is either 250 Hz or 500 Hz, and the companion Android control app can display measured electrode301
impedances during cap appliance.302

2.3.1.2 Muse S303

The Muse S16 headband is a low-cost Bluetooth wireless EEG device. Following the international 10-20304
system, Muse S features four channels: frontal AF7 and AF8, temporal TP9 and TP10, as well as FPz used305
as reference. The electrodes are made of conductive ink on flexible fabric adhesive, and the data sample306
rate is 256 Hz. Additional sensors on the Muse S are accelerometer, gyroscope and photoplethysmography307
(PPG) heart rate sensor using LEDs. The device introduces an unwanted time delay in the range of 20 ms to308
40 ms with 5 ms jitter, and a 0.01 to 0.05% loss of EEG samples, as described by Przegalinska et al. (2018).309
Accessing data from Muse S over LSL can be done for example by using the muse-lsl Python package310
(Barachant et al., 2019).311

2.3.1.3 Neurosity The Crown312

The Crown17 is a wireless EEG system using dry electrodes and wifi. It provides LSL signals directly313
from the hardware for the eight EEG channels, primarily located on top of the head for motor imagery,314
sampling at 256 Hz. Following the 10-20 system, the electrodes are placed at Cp3, C3, F5, PO3, PO4, F6,315
C4, and Cp4, with reference electrodes at T7 and T8.316

2.4 Software317

2.4.1 Programming languages318

A number of programming languages have historically been used for BCIs. C++ and MATLAB18 were319
some of the first, while more modern alternatives have emerged, replacing for instance the commercial320
MATLAB language with Python19, much due to the fact that Python is free to use and have a large open-321
source community developing frameworks like MNE-Python. On the far horizon, the Julia20 programming322
language is rising, addressing some of the drawbacks with Python like slow computations and dependency323
on optimized C-code. However, Python and Julia are mainly scientific compute languages, and they are not324
the ideal candidates when it comes to visualization and stimuli presentation.325

15 mbraintrain.com
16 choosemuse.com
17 neurosity.co
18 mathworks.com
19 python.org
20 julialang.org
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JavaScript21 is the most widely used programming language nowadays22 for open-source software, and is326
used both for front-end and back-end web programming. Graphical user interfaces (GUIs) using HTML23327
and CSS24 with the companion language JavaScript are easy to setup, and require no compiling or building,328
which give quick visual feedback. There are many visualization libraries helping you produce interactive329
graphics, both for 2D and 3D, to use Virtual Reality headsets, and replaying videos and audio.330

2.4.2 Inter-process communication331

When building a modular software system, inter-process communication between different parts is needed332
for the subsystems to cooperate. Various methods have been used throughout computing history like signals,333
message queues, sockets, named pipes, and shared memory, to name a few. For a research framework,334
compatibility is highly desirable, both between operating systems but also between programming languages.335
Also, the possibility to run the subsystems on separate machines across a wired or wireless network needs336
to be considered.337

2.4.2.1 Lab streaming layer338

The Lab streaming layer (LSL) is a system for real-time measurements and time-synchronization of time339
series data between various computers and input devices. LSL handles data-streams both with uniform340
sample rate such as EEG data, and non-uniform sampling rates such as event streams from a stimuli341
device, mouse-clicks, and other types of inputs. Communication over the LSL can be setup in a number of342
programming languages (C/C++, Matlab, Python, Java, etc.) with just a few lines of codes. Over the last343
decade LSL has been used extensively for EEG signal acquisition and online processing. As a result, LSL344
supports many EEG toolboxes and EEG caps, as well other input devices such as video game controllers345
and eye-trackers25.346

Under the hood LSL is using network protocols such as UDP and TCP, and communication is facilitated347
using a core library called liblsl as described by Stenner et al. (2022), implemented in the C++ programming348
language. Besides C++, interfaces for programming languages such as Matlab, Python, C, Java and Julia349
are also available, which makes it easy to use LSL in most scenarios.350

In order to make data available to other devices and computers on the local network, a producer of data351
like EEG caps and stimuli programs create an LSL-outlet. An LSL-outlet contains metadata relevant for352
the particular source of data, and provides functions to push data out on the network. The combination353
of data and corresponding metadata is referred to as an LSL-stream. With the data stream available, other354
applications on the network can find a particular stream by looking for some specific field, information, or355
attribute in the metadata. When a stream with the desired attribute is found, an LSL-inlet is defined. The356
LSL-inlet is then used to acquire data that is made available on the network through the corresponding357
LSL-outlet26. The LSL software also comes with an LSL-recorder written in Python that can be used to358
save data from all LSL-streams on the network during a specific session. This is useful to save the full359
sequence of events and data generated during a session. The data is saved in the extensible data format360
(XDF)27 file format.361

21 javascript.com
22 octoverse.github.com/2022/top-programming-languages
23 html.spec.whatwg.org
24 w3.org/Style/CSS
25 labstreaminglayer.org
26 labstreaminglayer.readthedocs.io/info/intro.html
27 github.com/sccn/xdf
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With a wide support of programming languages and relevant devices, simplicity to use, community362
adaptation as well as being open-source, LSL is a natural choice for some parts of the inter-process363
communication in a BCI system.364

2.4.2.2 Websockets365

Unfortunately, web technologies running inside a browser are not allowed to open raw sockets as those366
used by LSL. An LSL implementation could be implemented for server-side JavaScript based coding using367
node.js28 or similar back-end tools. However, the current security model for browser-based JavaScript does368
not permit the low-level network handling that is a vital part of LSL, as described above.369

Rather than using HTTP polling, websockets is a full-duplex communication link permitting transfers to370
be initiated both from the client and the server once the websocket is up and running. This is used as a371
low-latency communication link to handle a real-time BCI for visualizations, stimuli presentation, and the372
subject’s input and output. Websockets use TCP networking and work across operating systems, separate373
computers, and between processes run on the same computer.374

2.4.3 Stimuli software375

For any experimental setup for human-in-the-loop BCI research one needs ways of presenting stimuli to376
the subject. Today’s computers are pretty good at presenting images, videos, playing audio, and doing 3D377
graphics. For external stimuli like lights, USB-connected embedded electronics can be used. Using taste,378
smell, or haptic feedback is not so common. There are ready made stimulus software tools and Python379
modules that can be used.380

Modern computer monitors typically have a fixed update frequency, typically 60Hz, or higher when381
considering displays intended for gaming. The latency from a display software update to the actual update382
of the graphics on the screen will have a time jitter with uniform random distribution between 0-16.7 ms,383
on top of the fixed unknown graphics pipeline latency. One remedy to the jitter related to display refresh384
rate is to make sure that the lines of code in the software that updates the display are synchronized to the385
updates of the display. One such mechanism is the Window.requestAnimationFrame() that is386
part of the web APIs found in common browsers like Google Chrome, Mozilla Firefox, and Apple Safari,387
and access it using JavaScript. This event acts like an interrupt that will trigger every time the monitor388
updates, effectively synchronizing the stimulus presentation with the display. However, there is still an389
unknown latency between this software interrupt and the actual display update. A websocket callback390
can tell other parts of the system when the update happened. The inter-process communication will have391
smaller jitter compared to the display refresh jitter. Note that using advanced display modes, like turning392
off double buffering from the GPU, will not change the amount of jitter in the display update, it will simply393
lower the latency without affecting the jitter uncertainty. Actually, without double buffering the possibility394
of reducing the jitter using a display refresh rate interrupt is lost.395

2.4.3.1 Using modern web technology for stimuli presentation396

Naturally, there are ways of playing audio and presenting images and videos to a subject in almost397
any programming language. However, modern web technology is cross-platform and surprisingly easy398
to handle for almost any kind of stimuli like audio, images, video, and virtual reality. Another benefit is399
the lack of compile time, providing instant feedback by a simple reload of the browser page. There is lots400
of help to be found, with numerous examples and guides on the internet. Virtual Reality stimulus can be401

28 nodejs.org
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implemented using ThreeJS and WebGL, supporting a wireless Meta Quest 1 and 2 wireless VR headset,402
as well as tethered VR headsets. These kind of web applications can easily be run on MacOS, Microsoft403
Windows, and Linux by installing the Google Chrome web browser.404

2.4.4 Online processing with Timeflux405

Timeflux (Clisson et al., 2019)29 is an open-source framework for data collection and real-time processing406
of generic time series data, developed with bio-signal applications and BCIs in mind. The framework407
is written in the Python programming language. Timeflux is designed for being easy to use, having a408
lightweight core functionality, being modular in the sense that sub-components are replaceable, making409
it easy to reuse or incorporate existing code, and being easily extendable by adding custom or modified410
modules.411

In this section, some fundamental concepts of Timeflux will be introduced and explained. For a more412
extensive presentation and documentation, see the original paper and the online documentation (Clisson413
et al., 2019).414

2.4.4.1 Timeflux basic concepts415

Applications in Timeflux consist of one or multiple graphs, constructed from nodes and directed edges.416
Nodes are used to process data while edges define how and in which direction data flows between the nodes417
within a graph. All processing steps in one graph are executed at the same frequency, the rate of the graph.418
Different graphs can be executed at different rates and communication between graphs is facilitated by a419
publisher/subscriber system.420

In Timeflux, the structure of the nodes and directed edges have to be defined in a way such that the421
resulting graph is a directed acyclic graph, meaning that no cycles can be formed. Thus, following the422
directed edges, it is impossible to get to a node of the graph that has already been traversed. The directed423
acyclic structure guarantees that the processing steps of each node can be executed sequentially, where424
certain nodes have to be executed before others, as the output of some nodes might be the input(s) to other425
nodes. The sequential execution also implies that the full sequence of processing steps in a graph can be426
executed at fixed frequency (rate) without ambiguities in order of execution.427

A Timeflux node is a regular Python class with the addition of some inherited extra functionality from the428
Timeflux Node superclass, such as receiving data from and sending data to other Timeflux nodes within the429
graph. Receiving and sending data is done with input ports and output ports, which are inherited from the430
Timeflux Node class. Every node also has a function called update(). Every time a graph is executed,431
the update() function for each node of the graph is called once.432

Communication between different graphs is done asynchronously using a publisher/subscriber system433
facilitated by a few Timeflux nodes designed for this purpose. These special nodes are the Pub and Sub,434
and Broker nodes. The Broker node acts as a mediator handling the passing of data and is always placed435
in a separate graph. The Pub and Sub nodes are incorporated in graphs as regular nodes, providing an436
interface to the Pub and Sub nodes of other graphs. Under the hood, these inter-graph communication437
nodes are using the ZeroMQ-protocol30.438

29 timeflux.io
30 zeromq.org
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2.4.4.2 Building Timeflux applications from existing nodes439

For a Timeflux graph the structure of nodes, edges, and execution frequency are specified in a yaml440
configuration file. In the yaml-file, an instance of a node is specified by a number of fields. Typically, these441
fields are: a unique identifier, the name of the Python class implementing the node, and possibly parameters442
passed to the constructor used to specify non-default behaviors of the node. Similarly, an edge is defined by443
two fields, source and target. Here, the source specifies the identifier (and output port) from a node sending444
data, and the target specifies the identifier (and input port) of a node receiving the corresponding data.445

2.4.4.3 Notable Timeflux nodes446

The Timeflux package comes with a number of nodes and functions providing the essential building447
blocks for running nodes and building useful applications. With the aim of having a lightweight core in448
mind, functionality other than the most essential, such as various digital signal processing (DSP) nodes in449
Timeflux-DSP and a simple user interface (UI) node in Timeflux-UI, come as separate packages. Some450
Timeflux nodes, essential for building EEG-processing applications, are mentioned below:451

• The Sub and Pub nodes are used to facilitate inter-graph communication by subscribing and publishing452
to so-called topics.453

• The Send and Receive nodes (from the LSL module) are used to send and receive data to/from454
LSL-streams on the network.455

• The Epoch node buffers and collects EEG data and then time-locks it to stimuli event markers, which456
indicate that a stimuli was presented to the subject. If the event marker also contains label information,457
this data is concatenated with the epochs such that labeled data used for machine learning can be easily458
constructed. The Window node has a similar purpose as the Epoch node. The difference here is that459
epochs are now cut with fixed time intervals, possibly overlapping, non-time-locked in relation to460
external events or stimuli.461

2.4.4.4 Building custom Timeflux nodes462

Custom Timeflux nodes can easily be developed and implemented. As mentioned above, a node is a463
regular Python class inheriting a few properties and requirements from the Node superclass. Thus, the464
implementation of a custom node is very similar to implementing a regular Python class. The constructor465
arguments specify parameters that can or need to be passed when creating an instance of the node/class.466
Non-default parameter values are passed from the yaml-file, and the code inside the constructor is run once467
upon initialization. Then, the code in the update() function is run once every time sequence of steps in468
the corresponding graph is executed. For near real-time processing of data, the update() would typically469
consist of the following steps: First, check that some conditions of interest are fulfilled, for example if470
all input data of interest is available on the input port(s). If so, unpack the data and perform any desired471
operations on the data. Finally, send results to an output port, making it available to the next node in the472
graph.473

3 METHODS

In this section we start by discussing desirable properties of a BCI framework, based on the presentation474
of existing equipment, communication protocols, and BCI frameworks described in Chapter 2 above. We475
describe how some of these parts can be used to design components of a BCI framework and refer to this476
as the BCI-HIL research framework presented in this paper. Chapter 4 will describe how these components477
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can be combined to more specific BCI applications. Finally, practical aspects and limitations of latency478
calibration and real-time filtering are presented.479

3.1 Desirable properties of a BCI research framework480

There are many desirable properties of software artefacts such as functionality, ease-of-use, and481
customizability, and these apply to BCI research frameworks as well. There will always be trade-offs482
between different aspects of these properties as some are, or might be, in direct or indirect conflict with483
each other. What properties are most important will clearly depend on the intended use, and who is setting484
up and running the system.485

Functionality: One important property to look for is the current functionality of the framework. If486
features required for the intended use are not available, there are two options. Either move on to another487
set of tools or try to get the missing features implemented into the framework in some way. If this is488
possible will depend both on other properties of the framework such as customizability and community489
support, as well as the available resources and programming skills at hand. If the user of the framework has490
intentions to develop new custom functionality it is still important to evaluate the fundamental properties491
of the framework such that the desired extensions can be implemented without a complete redesign of the492
framework.493

Ease-of-use: What makes something easy to use is not the same for people of different backgrounds.494
It also depends on what aspects of the system that should be easy to use. Should it be easy to get started,495
to build standard BCI paradigms, or to implement new algorithms? In general, the framework should: be496
quick and easy to install, have intuitive setup and usage, have a GUI, enable use of standard equipment497
and interfaces, have possibility to use already existing hardware and software, with possibility to add498
not-yet-released hardware, etc. Additionally, a research framework should preferably not require expensive499
commercial licensing of closed-source software.500

Modularity: Using a modular design with standard interfaces between components is important if the501
intended usage of the framework is changed, if better alternatives to some parts of the system become502
available, or if some new equipment needs to be added. Should any part of the framework require503
modification or supplementation, it would be advantageous for the specific component in question to be504
able to be altered independently. Another important aspect of a modular design is that system components505
that are not used can be removed, allowing for an application with as low resource requirements as possible506
when it comes to computations, memory requirements, and hardware cost.507

Compatibility: Another desirable property for the system is to be compatible with as much relevant508
software and hardware equipment as possible.509

Customizability: Having a system that can be customized, is in some contexts also highly desirable. Some510
properties that make a framework customizable are modularity (see above), the code being open-source,511
and the ability to build and incorporate custom system components in a frictionless way.512

3.2 BCI-HIL Modules513

With the overall ambition of providing and exemplifying tools for researching and developing the BCI514
systems of the future, we present a system design with the main objective of being a modular framework515
that is fully and easily customizable. We also aim for a design using only open-source components that516
can be run on any of the most common operating systems (Windows, MacOS, Linux), and distributed on517
multiple computers if desired.518
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With these objectives in mind, visualizations and graphics are displayed directly in one or several web519
browsers. Real-time features are provided by the Python package Timeflux, while signal processing520
and machine learning functionalities can be either implemented from scratch or fully performed by (or521
combined with) standard packages from the Python community, such as SciPy (Virtanen et al., 2020) and522
scikit-learn (Pedregosa et al., 2011). A central module is keeping track of the dynamics of the stimuli523
environment and high-level logic for signal processing and machine learning. Communication is enabled524
via standardized technologies, such as websockets connecting modules, and LSL facilitating the transfer of525
EEG data and stimuli streams between the modules and associated hardware.526

The BCI-HIL framework has a modular build, with well-defined inputs and outputs between the modules.527
This enables us to replace parts, combine different programming languages and get an advantage by using528
the most fit tools for their purpose. The modules are the Engine, the Admin GUI, the Client GUI(s) and the529
Calculate program, as seen in Figure 3. They are described in more detail below.530

3.2.1 The Engine program531

The Engine is the part of the BCI-HIL research framework that knows everything. It provides time532
synchronization in sub-millisecond precision to all other modules in the system. It keeps track of533
experiment state and relays information between the Admin GUI, the Client GUI, and the Calculate534
program. Additionally, the Engine creates relevant LSL marker events indicating stimuli onsets and other535
experimental conditions. For different BCI applications, some parts of this program have to be re-designed536
to enable the desired behavior. For example, BCI paradigms like P300, Motor Imagery, and SSVEP all537
require different experimental setups which need to be implemented in the Engine program. However,538
interacting with the other modules of BCI-HIL will look very similar between applications. Finally, the539
Engine program archives the incoming EEG data and LSL events on a local disk, to facilitate subsequent540
offline analysis.541

3.2.2 The Admin GUI542

The Admin GUI is where any control command is given by the experiment administrator. This is done543
from a series of action buttons like Start trial, Pause, Abort, as well as text fields where information such544
as the subject-ID, session number, and other experiment specific data can be input. The Admin GUI is also545
where online experiment feedback is shown. This could be anything from raw EEG-signals to graphs like546
classification probabilities, stimuli histograms, visualizations using dimension reduction, or scatter plots.547
The information presented here is meant to supervise the inner workings of the algorithms in order to help548
the researcher understand and improve the experiment setup. Figure 4 shows a screenshot of the admin549
GUI in the Clear By Mind application (further details in Section 4.2). Additionally, the internal timestamp550
of BCI-HIL is shown on the Admin GUI display. If the experiment is video-recorded, this timestamp can551
be used to match recorded data from the LSL-streams with real-world experimental conditions, allowing552
for backtracking of potential issues or locating events of interest.553

3.2.3 The Client GUI(s)554

The Client GUI is where the subject is focusing and where stimuli are presented during a trial. Connected555
to a monitor the module can show visual stimuli as typically done in many BCI paradigms. Similarly, with556
speakers connected, the Client GUI can also produce audio stimuli for the experiment if desired. Figure 5557
shows a screenshot of the client GUI in the Clear By Mind application (further details in Section 4.2). This558
module is synchronized to the display output, to keep the jitter of visual event markers low. Several Client559
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GUIs can be run at the same time, either on the same or different computers connected the wifi network.560
This enables interactive sessions with multiple subjects, such as competitive games or collaborative tasks.561

Similar to the Admin GUI, the Client GUI displays the BCI-HIL timestamp, enabling time synchronization562
of video recordings with timestamps of data recorded from the LSL-streams. However, to reduce the563
cognitive distraction of the subject, this timestamp only updates at events and does not run continuously.564

3.2.4 The Calculate program: Timeflux in BCI-HIL565

In BCI-HIL the Timeflux application is constructed using four graphs: input/output, preprocessing, save,566
and machine learning graph. The first one is listening and sending data to relevant LSL-streams. In our567
case the LSL-streams of interest are the raw EEG data, stimuli markers, and messages with status and568
instructions from the Engine program.569

The preprocessing graph is where the EEG time-series is filtered and cut into epochs of appropriate length.570
The epochs are either cut based on a stimuli onset time, or with a fixed time interval in a rolling window571
fashion, possibly overlapping. In the former case the epochs might also be paired with the corresponding572
labels from the stimuli markers. The structure of this graph would look similar for most EEG-related573
applications. Parameters that might be of interest to tailor based on application and paradigm in this graph574
are: type and cut-off-frequencies of band-pass filter, epoch length, and whether to use epochs time-locked to575
stimuli or not. Other nodes that could make sense to have in this graph are artifact removal and baselining.576
The save graph continuously archives epochs and corresponding labels (when applicable) to disk.577

The machine learning graph performs various kinds of analysis on the preprocessed data. The structure578
and nodes used in this graph will depend heavily on the paradigm, application, and what aspects of the579
BCI that are of interest at the moment. For combined calibration and inference sessions it is natural to first580
collect and save labeled data. Then, when ready for a feedback session, use the collected data and possibly581
additional data from a cloud database, to train a machine learning pipeline of choice, and finally apply the582
trained model to new epochs.583

3.2.4.1 Custom BCI-HIL nodes584

In order to facilitate signal processing and machine learning algorithms in line with design principles585
described above, a few Timeflux nodes that are not part of the original Timeflux package were implemented.586
These custom nodes would be a natural part of many BCI applications, and they are implemented to587
facilitate easy integration of transfer learning and custom functionality.588

• TrainingML: This node is accumulating labeled data and, upon request, trains a scikit-learn pipeline589
using the collected data (and possibly other data) and saves the trained model locally to disk.590

• InferenceML: This node loads a trained scikit-learn pipeline from disk and runs inference on new591
EEG-epochs made available from the preprocessing graph.592

Scikit-learn is one of the most widely used machine learning packages using the Python programming593
language. The package includes ready-to-use implementations of a large number of tools and algorithms594
for machine learning and signal processing. Scikit-learn uses a standardized syntax to specify how different595
models transform data and how they can be trained on data. This format is so common that the majority of596
third-party machine learning and signal processing algorithms, even those not included in the scikit-learn597
package, also implement the same structure. This makes a large number of algorithms from the whole598
Python community available, for example all decoding modules from MNE-Python. The standardized599
structure allows several modules to be piped together, acting as one module, using a scikit-learn pipeline,600
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enabling fast prototyping. Enabling intuitive usage of scikit-learn compatible modules in BCI-HIL gives601
direct access to many off-the-shelf algorithms as well as an easy way to implement and integrate custom602
modules, in turn leading to easy experimentation, ease-of-use, modularity, and customizability.603

With the BCI-HIL framework a researcher can add their own machine learning algorithms to the Timeflux604
nodes as per the requirements in their experiment, as long as it follows the Scikit-learn syntax. BCI-HIL605
provides the structure for presenting the experiment, collecting and analysing the data but the user can606
adjust all parts of the framework to their needs. This is one of the strengths of the BCI-HIL framework, the607
customizability for the user to implement any BCI paradigm and corresponding machine learning algorithm608
they need.609

3.2.5 BCI-HIL advantages610

Our research framework only depends on free-to-use open-source tools and languages. Other state-of-the-611
art BCI frameworks such as BCILAB, EEGLAB, and FieldTrip requires licensing MATLAB, and Octave612
being a somewhat MATLAB-compatible environment is unfortunately not mature enough to handle these613
extensive packages. Regarding programming languages, BCI-HIL is written in the Python and JavaScript614
languages, regarded as easier to learn and more portable than the C++ language used by the BCI2000 and615
Falcon frameworks. Also, BCILAB, OpenViBE and Gumpy are no longer in active development.616

3.3 Human-in-the-loop feedback617

Traditionally, neurofeedback has been studied through the feedback of one-dimensional features, often618
based on the energy content within a specific frequency band. The goal is for the subject to consistently619
amplify or attenuate this feature. The purpose of many such studies has been to mitigate neurological620
disorders such as anxiety, insomnia, or epilepsy, or to improve desired states/behaviors such as cognitive621
performance or sleep quality. If such effects can be attributed to the modulation of certain neurological622
processes is still under debate, according to Marzbani et al. (2016). Other studies have focused on providing623
neurofeedback with the aim of guiding the user to encode mental states useful for control of some kind of624
application, for example a simple computer game or moving a cursor on a computer screen, as done by625
Neuper and Pfurtscheller (2010). Additionally, it is well-established that brain activity and mental states626
can be decoded to varying degrees of accuracy, depending on the paradigm, equipment, and experimental627
setup utilized.628

In an active BCI setting, the performance of the system is clearly dependent on both the BCI decoding629
algorithm as well as the encoding of mental states performed by the user, exemplified in one longitudinal630
study leading up to the Cybathlon BCI race (Perdikis et al., 2018). With the large inter-subject and inter-631
session variability seen in BCI, modern decoding approaches often take a data driven approach based on632
machine learning. Thus, the BCI is learning from data and can be tailored to a specific subject or session633
as more data becomes available. This leads us to the so called co-adaptation (Perdikis and Millan, 2020)634
and two-learners problem problem (Müller et al., 2017) where the machine and human both learns and635
adapt their strategies over time, hopefully converging to a system that can convey more information in636
a more robust and intuitive way. Here it is important to give, not only the computer but also the human,637
relevant feedback such that the mental strategy can be adapted and/or learned. Thus, selecting what kind of638
feedback to display, and how, is of interest for optimal user-learning (Roc et al., 2021).639

Additionally, for reactive BCIs with stimuli presented sequentially to the user, closing the loop with640
the human also has potential benefits. If the decoding results of stimuli presented early in the experiment641
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indicates a certain result, this information could be leveraged to better decide which subsequent stimuli to642
display, as presented by Tufvesson et al. (2023).643

In the case of a passive BCI, closing the loop with the user would be accomplished differently. Although644
the user is not actively attempting to communicate with the BCI, the results obtained from decoding can645
still be utilized to influence the environment in which the user is operating. Examples could be adjusting646
the difficulty of task based on decoding of cognitive load, or indicating when it is time to take a break due647
to tiredness.648

3.4 Hardware latency calibration649

When conducting neuroscientific experiments or using a BCI, it is often important to accurately650
synchronize stimuli onsets with the corresponding EEG-data. Different types of equipment for stimuli-651
presentation have different properties and imposes different types of delay. Also, within the same type652
of equipment there is a lot of variability. In order to mitigate the effects of intrinsic delays of the system653
components it is essential, for each setup, to perform a delay calibration. A thorough description of latencies654
in a BCI setup is presented by Wilson et al. (2010).655

Another type of latency is the one introduced by signal processing steps, and an intrinsic problem when656
performing analysis on epoched data is that the signal processing cannot start before the data from the657
whole epoch time window is available. To get a faster response, the epoch will have to be divided into658
smaller chunks that can be processed with a lower latency.659

3.4.1 Calibrating Audio to Display Latency660

The combination of a chosen display device and an audio device will need to be calibrated. With human-661
in-the-loop calibration, this step includes adjusting an on-screen slider that will change the audio-to-display662
latency until the audio clicks are perceived to correspond to visual flashes on the display.663

In order to obtain an approximate estimate of the intrinsic audio latencies present in your Client GUI664
setup, it is possible to conduct a measurement of the round-trip audio latency of the hardware and stimuli665
web application combined31. Do note that this test, run in a web browser, measures your combined audio666
output and input latency.667

3.4.2 Calibrating Display to EEG Latency668

The latency in a computer system from the CPU to visible changes on a display consists of many steps.669
The, much simplified, chain is from the CPU to graphics drivers, to the GPU and then to the display device.670
The latency in this part will change depending on settings like which render mode the OS uses (DirectX,671
OpenGL, Vulcan, Metal, etc.), as well as settings like double/triple buffering, vsync and frame rate limiting.672
Even though the Client GUI computer is good at knowing when the information is sent to the display673
system, there is still a part of the display latency that cannot be measured without external hardware.674

The display used can be the internal display of a laptop, or an external display connected with any675
common interface like VGA, DVI, HDMI, Display Port or USB-C. Typical input lag values for HDMI676
input for an external computer monitor is between 9 ms to 117 ms, with a 29 ms median value, when tested677
using a Leo Bodnar HDMI input lag tester32 according to the Display Lag Database33. For a TV the input678

31 superpowered.com/webbrowserlatency
32 leobodnar.com
33 displaylag.com/display-database
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lag is between 18 ms to 177 ms, and 9 ms to 31 ms in low latency game mode when measuring a range of679
hundreds of TV models34. This kind of uncertainty needs to be accounted for, especially if we are to regard680
the higher time resolutions found in EEG signals. Also, note the difference between response time, input681
lag, and refresh rate. The response time for a TV or computer monitor is how fast one single pixel can flip682
from being light to being dark, while input lag is the time it takes for the monitor from first input signal to683
presenting the image on screen. The input lag is always larger than the response time. The refresh rate is684
how many times per second the display can redraw the image.685

A calibration of a certain hardware setup needs only to be done once, then the found latency needs to be686
applied to all signals acquired with that setup. Numerous third-party stimulus trackers are available for this687
kind of latency measurements. As an alternative, we suggest using human-in-the-loop synchronization,688
where tapping the EEG headset to create artifacts in sync with visual flashes lets us measure the latency, at689
least to the accuracy of the human-in-the-loop’s taps on the physical EEG hardware. Humans can tap to a690
beat with approximately 30 ms variance (Tierney and Kraus, 2013), and by measuring multiple taps, the691
variance can be averaged out.692

3.4.3 Calibrating Audio to EEG Latency693

Playing sounds using a laptop includes a ring buffer of samples that is filled in an event-based interrupt694
driven function. Different operating systems and audio codecs will have different sizes of their audio695
buffers, and latency will depend on these factors. Using an external audio hardware digital-to-analog696
converter (DAC) will also change the latency, and using wireless headphones or an external amplifier will697
also add to the audio latency. Another factor to consider is the speed of sound, approximately 343 m/s698
in dry air at 20 degrees Celsius, which introduces a latency of approximately 3 ms per meter from a699
loudspeaker to the subject’s ears.700

The setup used for getting the display to EEG latency is used similarly for audio to EEG calibration.701
Tapping the EEG headset to create artifacts in sync with audio clicks lets us measure the latency, at least to702
the accuracy of the human-in-the-loop’s taps on the physical EEG hardware, as described in the previous703
section.704

3.5 Hiding latency705

The subject expects the Client GUI to update smoothly, with graphics being animated in sync with the706
Client GUI display many times per second, especially in a fast-paced BCI setting. The Engine program707
decides the state of the BCI system at a lower frequency, and any classification or machine learning might708
take even longer time and provide updates less often. One major challenge in such a system is to keep the709
subject immersed by hiding the slower parts of the system, keeping consistent graphics updates despite710
uncertainty in when results and classifications get updated.711

Online multiplayer games have exactly this problem, where clients have inconsistent and varying latencies712
to the server. One approach used in multiplayer online gaming is to use predictive algorithms to extrapolate713
other players’ movements and then correcting them every time the true server state arrives. Another strategy714
is to use techniques such as data compression and network optimization to reduce the amount of data that715
needs to be transmitted over the network. This can help to minimize the impact of network latency and716
reduce the amount of time that it takes for data to travel between the player’s device and the game server717
logic. To minimize network congestion and latencies, use a local network to connect devices, dedicated to718

34 rtings.com/tv/tests/inputs/input-lag
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the computers running the experimental setup with as few as possible external devices present. Similar719
approaches could be used to keep the Client GUI updating smoothly.720

A simple way to hide latency in a single-person BCI research setup is to smoothly animate changes in bar721
graphs and fade images in and out. Not everything should be smooth, though, since when using the P300722
response as described by Chapman and Bragdon (1964), images shown to the subject should be shown723
instantly, to keep the onset event timing as distinct as possible.724

3.6 Non-causal filters vs. causal filters725

When doing offline analysis, we have access to all data in the EEG time-series. This helps us as non-causal726
filters with perfect frequency and phase responses can be designed. However, when using these kinds727
of filters for online processing we will have to introduce delays waiting for the future signals to arrive728
before we can use them, making the analysis slightly delayed compared to real-time. The other option729
is to employ causal filters, which inevitably entail a drawback or compromise that we need to take into730
account. A common method to make this trade-off is to use the impulse response of the desired non-causal731
filter, and time-shift it and multiply it using a windowing function, thereby truncating the length of the732
non-causal filter, turning it into a causal filter with an inherent delay. A description of what to avoid is733
discussed in the paper VanRullen (2011). The paper presents a warning against improper use of filtering,734
showcased with EEG signals shaped as step-functions with Gaussian noise and a filter function with735
excessive ringing. Biological signals are rarely shaped as step functions, and the Gaussian noise is higer736
than average, nevertheless, the paper proves an important point. Filtering of event-related potential (ERP)737
onsets and distortion of data is commented by Rousselet (2012). Further insights on aspects of ERP filtering738
can be gained by reading about, and understanding, the basics of ERPs (Luck, 2014).739

4 RESULTS

In Sections 4.1 and 4.2 below, we provide examples and describe how the different system components740
presented in Section 3.2 can be combined and used to design two different BCI applications. The first741
application is a scaled-down motor imagery experiment, containing one calibration session and one742
feedback session. The second application is an unsupervised visual P300 task, where the goal is to743
distinguish images in a target category from images in a number of non-target categories. These detailed744
demos using the BCI-HIL framework with source code and instructions for running the applications can be745
found in the repository complementing this paper35.746

4.1 Motor imagery BCI application747

In this section, we show how a scaled-down motor imagery BCI-HIL application can be built. More748
specifically the application is a standard motor imagery session with a calibration phase and a feedback749
phase. Additionally, during the feedback phase, the resulting classification results are fed back to the750
stimuli program, altering the behavior, in order to showcase the more general HIL-application. While751
the performed experiment is simple, the example application still contains most major components of a752
human-in-the-loop BCI. The example could have been scaled down even further by, one step at a time,753
removing components such as the Admin GUI, classification-feedback, online calibration, and online754
signal processing. Removing all of the mentioned components would collapse the setup to a regular motor755

35 bci.lu.se/bci-hil
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imagery data collection experiment. However, in the interest of generality, most system components are756
still included, while the experiment performed is chosen to be as simple as possible.757

4.1.1 Engine758

The Engine is kept simple. During the calibration phase the program generates which motor imagery-tasks759
the subject will be asked to perform, and this command is passed to the Client GUI. When timestamps of760
the instructions being displayed on the monitor become available, the Engine creates the corresponding761
LSL event markers. In the feedback phase, the Engine is listening for the output results from the Calculate762
program, and sends them to the Client and Admin GUIs. Throughout the experiment, the Engine takes763
commands from the Admin GUI such as experiment metadata and when to switch between the calibration764
and feedback phases.765

4.1.2 Client and Admin GUI766

In order to show only the bare minimum code and on-screen controls needed to run the experiment, both767
these programs are kept as simple as possible. The Admin GUI takes inputs which are forwarded to the768
Engine, while the Client GUI receives commands from the Engine saying what motor imagery commands769
and feedback to display to the subject.770

4.1.3 The Calculate program771

For this motor imagery experiment containing one calibration and one feedback session, we use the772
following Timeflux setup:773

• LSL graph: Here, the LSL-streams of interest are the EEG data itself, the stream with markers774
indicating when stimuli are displayed (in this case instructions to the subject on what motor imagery775
to perform), as well as streams with high level communication such as signaling when to start/stop776
collecting data, train a ML-model, or when the training is done and the feedback phase can commence.777

• Preprocessing graph: For preprocessing, two independent processing sequences are used in parallel:778
one for the calibration and one for the feedback session. Both sequences first apply a band-pass filter.779
The calibration sequence continues with the Epoch node (matching timestamps of stimuli markers780
with EEG-data in order to create epochs time-locked to the stimuli event). For a feedback session in781
a motor imagery experiment, there is no incentive to match epochs to stimuli events as the subject782
is intentionally encoding/modulating the mental state without being intrinsically time-locked to an783
external stimuli event. Therefore, the EEG data is cut into epochs with a fixed inter-epoch interval in a784
rolling window fashion. For this, the Window node is used. In the provided example code, the data is785
band-pass filtered between 8 and 30 Hz.786

• ML graph: This graph consists of the TrainingML and InferenceML custom nodes. When the787
experiment starts, the TrainingML node collects epochs produced by the preprocessing graph. Upon788
instruction from the Engine program, a scikit-learn pipeline model is trained on the available data and789
saved to disk. When ready, the InferenceML node takes over and loads the fitted model from disk and790
continuously classifies new EEG-epochs made available by the preprocessing graph.791

In the provided example code different scikit-learn pipelines are implemented. For instance, one792
of them calculates the covariance matrices for each epoch and uses minimum distance to mean793
classification on the Riemannian manifold. As emphasized above, any scikit-learn compatible classifier794
can be utilized by the researcher.795
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4.1.4 Running a session796

First, the computer needs to be setup to run Python programs, preferably using Python’s virtual797
environments36, Anaconda37 or Miniconda38. Additionally, a modern web browser has to be installed such798
as Google Chrome39. In order to run a session, four separate programs need to be started: the Engine, the799
Client GUI, the Admin GUI, and the Calculate program.800

To run the Engine, which is a Python program, a command line or terminal is used. Go to the engine801
folder using cd. The required Python modules are found in the requirements.txt file, and can for802
example be installed into your Python environment with the pip package installer using the command803
python -m pip install -r requirements.txt. Then, run the engine using the command804
python engine.py. Printouts and debug messages will be displayed in this command line window.805

The Client GUI and Admin GUI are regular HTML web pages and runs directly in a web browser.806
To run these programs, find the admin and client folders respectively and then run admin.html and807
client.html either by opening the file-path in the web browser, or by clicking the files directly in the808
file system (assuming that a correct default application is set). Make sure that the Client GUI window is on809
the correct display when doing the latency calibration, as different screens will have different latencies in810
your setup.811

The Calculate program is mostly running Python. However, since applications in Timeflux are defined812
and launched from yaml-files, the startup procedure is a bit different compared to when running813
the Engine. In order to run the BCI-HIL custom modules some extra setup is needed. For these814
instructions we refer to the README.md-file. Finally, to run the application from the command line,815
find the demo MI/graphs/ folder. Here, launch the main yaml-file with the command timeflux816
main demo MI.yaml. Additional options can be specified with flags. For more info on these options817
use the command timeflux --help.818

When the Engine and Calculate programs are run, they will start looking for LSL-streams on the local819
network. Make sure that the EEG hardware is powered on and configured to present itself as an LSL outlet.820
When the LSL-stream is found, a message will be written to the log output in the Engine’s terminal window.821
Similarly, with debug messages activated, the Timeflux Receive nodes will also indicate when a matching822
LSL-stream has been found.823

4.2 Clear by Mind BCI application824

Clear by Mind is a brain game using the BCI-HIL framework presented in this paper. The game shows825
what a brain computer interface can do in a few minutes without any prior training, calibration effort826
or transfer learning in an unsupervised experiment. The aim of the demonstration is to raise interest in827
real-time reactive BCI research.828

The task in the game is for the subject to identify an innocent group of people that are incorrectly829
suspected in an ongoing investigation. This is done using a wireless EEG headset and a reactive BCI830
based on the oddball paradigm using the P300 response (Chapman and Bragdon, 1964). The subject has831
information about one group of people that are innocent, for example ”the innocent people are green”,832
”yellow”, ”blue”, or ”red”. Examples of people from the different groups can be seen in Figure 6. In a833

36 docs.python.org/3/library/venv.html
37 anaconda.org
38 docs.conda.io/en/main/miniconda.html
39 google.com/chrome
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series of rapidly displayed images, the subject will count the number of times a person belonging to the834
innocent category is shown, and the BCI will output probabilities of each category being the innocent.835

One of the research questions that initiated the implementation of the Clear by Mind brain game is how836
to choose the stimuli sequence optimally. When using any event-related potential such as P300 in a reactive837
BCI, choosing a stimuli sequence algorithm that adapts to the classification results so far will outperform838
blind stimuli selection algorithms like pure randomness or round-robin algorithms (Tufvesson et al., 2023).839

4.2.1 Engine840

Similar to the the Engine in the motor-imagery BCI application presented in Section 4.1 above, the841
Engine creates relevant event markers and acts as the mediator between the the Client and Admin GUI, and842
the Calculate program. Additionally, logic for deciding which stimuli to be displayed is implemented here.843

4.2.2 Admin GUI844

The Admin GUI display is facing the audience and is not seen by the subject. In addition to accepting845
relevant operator inputs, it displays relevant information for the operator and audience such as the sequence846
of images shown and the current estimated probabilities output from the classification algorithm for each847
of the four different groups of suspects.848

4.2.3 Client GUI849

The Client GUI display initially shows an attract mode slideshow and simple instructions for the subject850
to follow. During a trial, when requested by the Engine, the Client GUI shows the rapidly changing images851
that the subject either counts or ignores.852

4.2.4 The Calculate program853

The goal of the Calculate program in this case is to find the target class that the subject is focusing on, in854
an unsupervised fashion. The only information available in this setting is the raw EEG data, and which855
stimuli were displayed at different points in time.856

• LSL graph: Similar to the motor imagery BCI application, the LSL-streams of interest are the EEG857
data itself, the stream with markers indicating when stimuli are displayed (in this case information on858
which stimuli were displayed), as well as the stream with general instruction regarding the experiment.859

• Preprocessing graph: Contrary to the motor imagery BCI application, the Epoch node is used860
throughout the whole session for creating epochs. Only time-locked EEG-epochs matched to stimuli861
onset are used in this oddball paradigm.862

• Signal processing graph: Since this is neither a regular supervised nor an unsupervised machine863
learning classification task, but rather a find the odd-one-out task, the previously mentioned TrainingML864
and InferenceML nodes are not used. Instead, a tailor-made node is used. Here, epochs are grouped865
corresponding to the color of the suspect being displayed when the epochs were collected. Any866
algorithm can then be applied to try to find the odd-one-out. In particular, an algorithm that averages867
epochs and compares pairwise distances between covariance matrices corresponding to the different868
classes is used.869

4.2.5 Running a session870

To run the experiment, follow the steps in Section 4.1.4. When the EEG hardware and all four programs871
are up and running, an initial calibration phase (see Figure 7) is used to find the latency from display output872
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to EEG input. This calibration should be done at least once per setup, since the latency depends on the873
specific combination of hardware.874

4.3 Pitfalls and troubleshooting875

There are numerous ways that the BCI-HIL research framework may or may not perform as intended. By876
carefully reading the log output of the Engine, most problems can be understood and corrected. Below is a877
list of potential configuration errors and how to handle them.878

• Engine debugging: Read the console output from the Engine program. Debug messages useful for879
understanding many issues are printed here.880

• Client and Admin GUI debugging: First, make sure to use the Google Chrome web browser for881
viewing the respective HTML files. The log output of these programs are found in the Console tab in882
the Tools for Developers sidebar. Debug messages useful for understanding many issues are printed883
here.884

• Timeflux and Calculate program debugging: At runtime, Timeflux provide debug messages if the885
application is launched with the --debug flag. If things are not working as expected when building886
or customizing applications in Timeflux, a natural initial debugging step would be to verify that all887
data is passed as expected.888

• No LSL stream found: If a wireless EEG hardware device is used, make sure that it is connected to889
the same wifi network as the computer that runs the Engine program. Also, make sure that this wifi890
network allows device-to-device direct communication with no firewall ”protecting” devices from891
each other. This may be the case in corporate wifi setups. The solution is to setup your own local wifi892
network using a personal wifi router, or even running the experiment using a mobile hotspot from893
a smartphone. The availability of LSL-streams can also be checked by installing any LSL recorder894
software, and there make sure that the EEG hardware can be found.895

• EEG data loss or jitter: The Client GUI in the Clear by Mind example brain game is setup to show896
EEG data with as low latency as possible. If frequent disruptions are noticed in the stream of incoming897
EEG data waveforms, the wireless setup might need to be optimized. To reduce jitter in the EEG stream,898
use wired communications wherever possible, and when forced to use wireless communication make899
sure that there are as few disturbing devices using the same frequency bands as possible. Regarding900
Bluetooth, it is a good idea to turn off other Bluetooth devices in closer proximity than 30 meters.901
Regarding wifi, a wifi analyzer app on a smartphone can be used to scan for and identify other wifi nets902
and routers that may introduce congestion and impair the wireless channel. It is also possible trying to903
switch to another wifi channel in the router providing the experiment wifi.904

• LSL timestamp units: Beware that EEG hardware using LSL can have their own interpretation on how905
to produce timestamps, especially when it comes to the unit: seconds, milliseconds, or nanoseconds.906
The timestamp may also be offset with zero being the boot time of the system, the Unix epoch in 1970907
or any other arbitrary offset.908

• Cloud computing: In this paper, we intentionally refrain from referring to any particular commercial909
cloud services or providers, and consider ”cloud computing” as any remote computer outside of your910
local network. Cloud computing services can provide you with virtual machines that support the911
websocket technology that we use as communication channel between modules in BCI-HIL. The912
deployment, security, and management of cloud-native technology is beyond the scope of this method913
paper.914
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4.4 Experiment preparations915

Before the BCI-HIL framework is used some preparations are needed.916

4.4.1 Human-in-the-loop latency calibration917

At least once for every unique combination of computer, display, loudspeaker, headphones, EEG hardware918
and network connection, you should estimate the latency between stimuli and EEG signal. The BCI-HIL919
research framework attempts to keep the jitter in this latency as small as possible. The average value of the920
latency is unknown, but often below half a second, which depending on circumstances can be regarded as921
small or large.922

4.4.2 Electrode impedance923

Preparing the EEG headset is an art in itself. Some EEG hardware has the possibility to directly measure924
the electrode impedance guiding the application of wet abrasive gel to minimize the artifacts that will arise925
from high impedance electrode to skin coupling, as described by Browne (1957).926

When using simpler EEG hardware, one way of detecting less-than-ideal impedance is to watch for the927
artifacts directly. EEG is measuring signals in the range of millivolts, and the electromagnetic environment928
of today contains a lot of noise sources that will interfere with the measurements. In almost any location929
where EEG measurements are done, there will be 50 Hz or 60 Hz disturbances coming from the electricity930
distribution system in walls, floors and ceilings. We can use these artifacts to roughly estimate if an931
electrode has a low enough impedance between the electrode and the skin, since whenever the impedance932
gets high, the 50/60 Hz amplitude will rise. A narrow band-pass filter around 50 Hz can be added to933
measure the energy in the signal, and then provide visual feedback on the Admin and Client GUI displays934
for all the measured EEG channels. The artifact amplitudes could then assist in aligning the electrodes and935
improve their connectivity. Since non-artifact EEG signals are inherently low amplitude, implementing936
a 1 Hz high pass filter should also get a good enough power estimation for EEG electrode adjustment937
guidance.938

A filter should be used to reduce these high impedance artifacts’ impact on your online analysis. This939
could either be a low pass filter, or a 50 Hz or 60 Hz notch filter. Do note that any kind of online filtering940
needs to make a proper trade-off between frequency and phase response vs. non-causality. Only introduce941
a filter if you know it makes sense to use it.942

5 DISCUSSION

5.1 Considerations when choosing a BCI research framework943

Having read up to this point, you have attained a substantial level of understanding concerning the research944
methodology and the requisite tools for BCI systems. Selecting a BCI framework requires a comprehensive945
examination of the framework’s intended purpose, as well as its target users and implementation methods.946
We have outlined a checklist of desirable attributes for a BCI research framework in Section 3.1.947

For example, if you are a scientist interested in experimenting with and developing new algorithms for948
BCIs or data analysis, you will probably also be proficient in programming. Such a user will most likely be949
interested in open-source code, a high level of customizability, and modularity (in the sense that different950
components of the system can be exchanged by others) which our framework BCI-HIL provides. Having a951
GUI and ready-to-use modules might be of relatively low importance in this case.952
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For researchers less proficient in coding, open-source code and complete customizability might be less953
important, while interaction with a large set of easily combined standard components and algorithms is954
valued highly. If you remain uncertain regarding the selection of an appropriate BCI research framework,955
we suggest opting for a Graphical User Interface (GUI) based drag-and-drop configuration, such as those956
presented in Section 2.2.1.957

5.2 Considerations when planning your experiment958

5.2.1 Ethical aspects959

It is imperative for any experimental study to undergo an ethical review by an external committee. For960
instance, in accordance with the regulations outlined by the European General Data Protection Regulation961
(GDPR), EEG data is regarded as personal data when it includes information about an individual’s962
physiology, health, or mental states. Although these properties are not typically utilized in a BCI setting,963
they are still inherent in the underlying EEG signal. As a result, it is essential to consider brain data to be964
equally sensitive as medical data and to treat it accordingly. One solution to ensure data privacy is to ensure965
that stored EEG data is kept separate from any personal identifiers. Specifically, any cloud computing966
devices responsible for processing the EEG data should not handle any metadata that could potentially be967
utilized to link the data to an identifiable individual. By implementing this approach, the EEG data can be968
appropriately treated as pseudonymized. For a thorough discussion about EEG signals and data privacy,969
see the article by Rainey et al. (2020).970

Regardless, your experiment should include a consent form, which subjects will need to sign before971
having their data recorded and used.972

5.2.2 Eye blink removal973

Depending on your experimental setup, there will be a certain amount of subject induced artifacts in the974
measured EEG data. These are unwanted segments where noise might completely mask out or deteriorate975
the signal-to-noise ratio of the EEG signal. Thus, parts of the time series could be unusable. One way976
of dealing with these artifacts is trying to limit them or control when they happen. Asking subjects to977
refrain from movements during parts of the experiment will lower the amount of noise due to mechanical978
or muscle movement. It also possible to introduce eye blink pauses in the experiments, trying to keep the979
amount of usable EEG data high. Another common practice is to add fixation crosses for the subject to980
focus on, to reduce the number of saccades. If you cannot avoid getting artifacts into your EEG signals,981
Jiang et al. (2019) gives an overview of approaches to EEG artifact removal.982

5.2.3 Baselining983

The EEG signal quality can be improved by using baselining, which means that the signals are reset984
to a starting level at the onset of an event, cancelling out drifting potentials between the EEG electrodes.985
Baselining is easier to use than high-pass filters which are known to deform relevant parts of the EEG-986
waveform in for example event-related potentials. Additionally, in contrast to any practically useful casual987
high-pass filter, baselining does not need to add processing delay to the EEG signal, since the correction is988
based on data that has already been acquired.989

5.2.4 Replaying a recorded session990

Even though all EEG-signals and stimuli are recorded, there is a point where changing the algorithms also991
would have changed the response or behavior of the subject. To be able to experiment with algorithms offline992
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in this setting, one would need to simulate a model of human behavior. There are models for generating EEG993
data on every level, from individual neurons up to single EEG scalp electrode ERP responses, as described994
in the book by Ermentrout and Terman (2010). Naturally, these simulation models are simplifications995
compared to a real human brain and will only to some extent help when optimizing algorithms offline.996
However, offline processing can help in finding artifacts as well as improve the understanding of the signals997
and noise present in the current experiment.998

5.2.5 Gradual improvements and iterations999

To optimize performance in every unique BCI situation one should plan for making many iterations.1000
Every paradigm, subject and specific setup is going to be at least slightly different. Additionally, insights1001
gained from offline analysis might lead to changes in the setup that help to improve the performance of1002
online human-in-the-loop system. But of course, the effect of these changes will only be seen when running1003
yet another iteration of the online system, as illustrated in Figure 2.1004

6 CONCLUSION

In this paper, we have presented our open-source BCI research framework for the next generation of brain-1005
computer interfaces, addressing the challenge of fast prototyping for online neural activity classification. We1006
introduced the BCI-HIL40 framework for real-time classification, analysis, and computations to bring the1007
human into the loop of learning, evaluation, and improvement. This approach can lead to shorter calibration1008
times and the possibility of researching new ideas and expanding where and when brain-computer interfaces1009
can be used.1010
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BCI-HIL Research Framework
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Figure 1. The BCI-HIL research framework separates the software into four major parts: The Engine
keeps track of the flow and orchestrates the other parts, keeping track of the current state of the experiment
and distributing messages and data between all other parts in BCI-HIL. The Engine also takes care of
storing EEG data without processing for offline usage. The Calculate module handles EEG preprocessing,
machine learning, creating epochs, training, and performing inference. The Admin GUI handles commands
from the experiment admin and presents the current status and live values in a dashboard. The Client GUI
presents stimulus for the subject and receives input from the subject.

Online experiment

Human EEG

CalculateClient GUI

Offline
analysis

Improve
algorithms

Figure 2. The dual loop present in many online BCIs, showing how to improve the human-in-the-loop
BCI. The innermost loop is the online experiment where the human subject and the BCI interact. This is
where both of them learn how to collaborate and work together. The outer loop is where this interaction
can be analyzed in detail to improve the BCI part of the inner loop.
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Figure 3. The hardware block schematics of a BCI-HIL research setup. The Engine is the central software
knowing the state of the experiment, gathering and sending commands to/from the other submodules. The
Client GUI and Admin GUI take care of displaying stimuli and information, and the Calculate program
could handle online machine learning, inference, classification, and transfer learning. The dotted lines
indicate communication using LSL and the bold bidirectional arrows represent communication using
websockets, and the others are USB/HDMI. Note that the mentioned software modules can be run using
separate computers if needed. The blue elliptical nodes are input and output devices to the BCI-HIL
research framework.

Figure 4. Screenshot of Admin GUI. The Admin GUI controls the BCI experiment through clickable
buttons and keyboard shortcuts while visualizing the current state with classifier performance.
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Figure 5. Screenshot of client GUI, where the subject is asked to focus on the visual stimuli which changes
a number of times per second during a session. In this case, in the BCI-HIL Clear By Mind example
application (see Section 4.2 for details).

Figure 6. Visual stimuli used in the Clear by Mind brain game. The subject knows that one group of
people, based on their color, is guilty. The subject is asked to count the number of times a person belonging
to this group is displayed. Artwork: Kirsty Pargeter/Freepik.
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Blank screen
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Figure 7. The flowchart for the Clear by Mind unsupervised classification experiment. At the start of
the session, the subject is introduced to the task of counting suspects and gets instructions on what to
expect during the experiment. Then, a five second rest state is used to let the subject focus, and then the
Client GUI will show a number of suspects images in rapid succession. After a while the subject gets to
rest again, letting him/her relax, move freely and do eye blinks, before continuing counting yet another
round of potential suspects. In this setup, the complete session lasts approximately 90 seconds. The latency
calibration only needs to be done once, and is optional, but will improve the accuracy of the recorded
marker’s relative position to any saved EEG data when used for offline analysis.
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